Causality and Omitted Variable Bias

Panel Data Econometrics
Prof. Alexandre Gori Maia
State University of Campinas

Topics
- Omitted Variable Bias
- 2 Stage Least Squares
- Propensity Score Matching

Reference
An important assumption of the OLS estimates is that the values of X are not related to the errors e, i.e.:

$$E(e|X) = 0$$

We say that the regressor X is endogenous when it is related to the errors e:

$$E(e|X) \neq 0$$

We assume that, once we hold X constant, we can observe random variations of Y or e.

The problem is that, for example, when a positive effect of e on Y may also generate an impact on X. In this case, X can not be assumed to be constant, and we are not able to obtain unbiased estimates using OLS.
Sources – Omitted Variables

- Suppose 6 farms with 3 distinct land sizes (A in hectares);
- Suppose that, the larger the land size (A), the larger the agricultural production (Y);
- Imagine now that the total volume of credit accessed by each farm (X, in thousands) **has no** impact on agricultural production (Y). But those larger farms accessed more credit;

<table>
<thead>
<tr>
<th>A=2</th>
<th>A=2</th>
<th>A=4</th>
<th>A=4</th>
<th>A=6</th>
<th>A=6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y=2000</td>
<td>Y=2200</td>
<td>Y=4200</td>
<td>Y=4000</td>
<td>Y=6200</td>
<td>Y=6000</td>
</tr>
<tr>
<td>X=2</td>
<td>X=4</td>
<td>X=6</td>
<td>X=8</td>
<td>X=10</td>
<td>X=12</td>
</tr>
</tbody>
</table>

- If we relate the total volume of credit (X) with production (Y), without controls for land size, we can erroneously assume a positive relation between credit and production:

<table>
<thead>
<tr>
<th>Y=2000</th>
<th>Y=2200</th>
<th>Y=4200</th>
<th>Y=4000</th>
<th>Y=6200</th>
<th>Y=6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=2</td>
<td>X=4</td>
<td>X=6</td>
<td>X=8</td>
<td>X=10</td>
<td>X=12</td>
</tr>
</tbody>
</table>

High values of Y are associated with high values of X, but X dos not determine Y.
Omitted Variables Bias

• Suppose that the population regression model is:

\[Y_i = \alpha + \beta_1 X_1 + \beta_2 X_2 + e_i \]

• But we mistakenly consider the model:

\[Y_i = \tilde{\alpha} + \tilde{\beta}_1 X_1 + e_i \]

• The undue omission of \(X_2 \) in our model will bias the estimate of \(\beta_1 \).

• The bias in \(\beta_1 \) depends on both the value of \(\beta_2 \) and the correlation between \(X_1 \) and \(X_2 \). In general:

<table>
<thead>
<tr>
<th>(\beta_2)</th>
<th>Corr ((X_1, X_2) > 0)</th>
<th>Corr ((X_1, X_2) < 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_2 > 0)</td>
<td>Positive bias</td>
<td>Negative bias</td>
</tr>
<tr>
<td>(\beta_2 < 0)</td>
<td>Negative bias</td>
<td>Positive bias</td>
</tr>
</tbody>
</table>
Exercise

1) The dataset *Data_RelativeIncome.csv* contains a household sample with information on relative income (average in the neighborhood) and income sufficiency (*GORI MAIA, A. Relative Income, Inequality and Subjective Wellbeing: Evidence for Brazil. Social Indicators Research, v. 113, p. 1193-1204, n. 2013*):

a) Analyze the relation between income sufficiency and log of relative income, without controls;

b) Analyze the relation between income sufficiency and log of relative income, controlling for per capita income and other variables;
We want to analyze: \[Y_i = \alpha + \beta X_i + e_i \]
But we have: \[\text{Cov}(X_i, e_i) \neq 0 \]
The OLS estimators are biased even for large samples

We need a instrument \(Z \) in such a way that:
\[\text{Cov}(Z_i, e_i) = 0 \quad \text{and} \quad \text{Cov}(X_i, Z_i) \neq 0 \]
The portion of \(Z \) associated with \(X \) is:
\[\hat{X}_i = \hat{\delta}_0 + \hat{\delta}_1 Z_i \]

The IV estimator is given by:
\[Y_i = \alpha + \beta \hat{X}_i + e_i \]
The IV estimator is consistent (unbiased for large samples) but can be biased for small samples
The structural form is

\[Y_1 = \alpha + \beta_1 Y_2 + \beta_2 X + e \]

The reduced form is:

\[Y_2 = \pi_0 + \pi_1 X + \pi_2 Z + u \]

The structural form is:

\[Y_1 = \alpha + \beta_1 \hat{Y}_2 + \beta_2 X + e \]
Example – Stata & R

• Suppose we have a model for y_1 as a function of an endogenous regressor (y_2), three exogenous controls (x_1, x_2 and x_3) and two instruments for y_2 (z_1 and z_2):

 * ordinary least squares
  ```stata
  regress y1 y2 x1 x2 x3
  ```

 * two stage least squares
  ```stata
  ivregress 2sls y1 (y2=z1 z2) x1 x2 x3
  ```

• The equivalent in R:

```r
# ordinary least squares
ols <- lm(y1 ~ y2 + x1 + x2 + x3, data=dataname)
summary(ols)

# two stages least squares
tsls <- ivreg(y1 ~ y2 + x1 + x2 + x3 | .-y2 + z1 + z2, data=dataname)
summary(tsls)
```
Example – Python

- The equivalent in Python:

```python
# ordinary least squares
x = pnad[['y2', 'x1', 'x2', 'x3']]  
y = pnad['y1']
X = sm.add_constant(x)
ols = sm.OLS(y, X).fit()
print(ols.summary())

# package for 2sls
from linearmodels.iv import IV2SLS

# two stage least squares
pnad['const'] = 1
 tsls = IV2SLS(dependent=pnad['y1'],
                exog=pnad[['const', 'x1', 'x2', 'x3']],[
                endog=pnad['y2'],
                instruments=pnad[['z1', 'z2']]).fit()
print(tsls.summary())
```
Exercise

 a) Analyze the relation between health status and wages using OLS;
 b) Analyze the relation between health status and wages using 2SLS;
Selection Bias

- We want to evaluate the impact of a program participation ($T=0$ or 1) on the outcome Y, controlling by x (vector of characteristics):

$$Y = \alpha + \beta x + \rho T + e$$

- But the selection of participants ($T=1$) and non-participants ($T=0$) is not random. This participation is defined by unobservable factors that are also related to the outcome Y, i.e.;

$$E(e|T) \neq 0$$

- Ideally, we wanted to estimate the *Average Treatment Effect* (ATE) by comparing the outcomes before the participation (Y_0) and after the participation (Y_1) for the same individuals.

$$ATE = E(Y_{1i} - Y_{0i})$$

- If we had a random selection:

$$ATE = E(Y_{1i} - Y_{0i}) = E(Y_i|T = 1) - E(Y_i|T = 0)$$
Matching

- Suppose a regression model with a treatment ($T=1$) and a control group ($T=0$):
 \[Y = \alpha + \beta x + \rho T + e \]

- Where T is not random and depends on non-observable factors:
 \[E(e|T) \neq 0 \]

- The Propensity Score Matching reduces the selection bias that is related to observable factors (z, which is a vector with characteristics determining both Y and T) by comparing treated and control individuals with similar characteristics (propensity score – $p(z)$):
 \[p(z) = \text{prob}(T = 1) = \pi z + u \]

- The treatment effect will be given by the Average Effect of Treatment on the Treated (ATT):
 \[\text{ATT} = E[Y_{1i} - Y_{0i}|T_i = 1, p(z)] = E[Y_{1i}|T_i = 1, p(z_i)] - E[Y_{0i}|T_i = 0, p(z_i)] \]
Example – Stata & R

• Suppose we have a binary variable T designating a treatment that impacts the outcome y, and we also have three exogenous controls (x_1, x_2 and x_3). The comparison between the OLS and PSM estimates in Stata can be given by:

* ols estimates for the impact of T on y
 regress y T x_1 x_2 x_3

* psm estimates for the impact of T on y
 psmatch2 T x_1 x_2 x_3, outcome(y)

• The equivalent in R:

```r
# package for matching
library("MatchIt")

# ordinary least squares
ols <- lm($y$ ~ $T$ + $x_1$ + $x_2$ + $x_3$, data=mydata)
summary(ols)

# match mfa and non-mfa observations
matchobj <- matchit($T$ ~ $x_1$ + $x_2$ + $x_3$, data=mydata)
summary(matchobj) # matchobj is an object
matchdata =match.data(matchobj) # matchdata is a data frame with matched individuals
att <- lm($y$ ~ $T$, data=matchdata) # mean comparison between treated and non-treated
summary(att)
```
Exercise

a) Analyze the impact of the program MAF on poverty perception using OLS;

b) Analyze the impact of the program MAF on the poverty perception using *propensity score matching*;